- MoHPC 4

HP Forums / Not HP Calculators / Not remotely HP Calculators ∇ / Estimation quiz!

Pages (2): $\mathbf{1} |$| | 2 | Next » |
| :--- | :--- | :--- |

Estimation quiz!

Threaded Mode | Linear Mode
30th July, 2020, 12:54
Post: \#1

EdS2 8

Posts: 525
Senior Member
Joined: Apr 2014

Estimation quiz!

This is from an old computer magazine: which is larger, the number of millimetres in a mile or the number of square yards in a square kilometre?

Any other quick numeric or numeracy quizzes to share?
(Of course I liked this one because I got it right...)
Email PM Paind

Paul Dale 8

Posts: 1,787
Senior Member
Joined: Dec 2013

RE: Estimation quiz!

Interesting problem. Being confident in both systems of units makes it easier.
Which is larger e^{π} or π^{e} ?

Pauli
cruff 8
Member
RE: Estimation quiz!

Paul Dale Wrote:

(30th July, 2020 13:27)
Which is larger e^{π} or π^{e} ?

Neither? It appears, to 9 significant digits, these are the same number. Too early in the morning to work out why at the moment.
\Rightarrow EMAIL PM P, FIND RUOTE RTREPORT

RE: Estimation quiz!

They differ in their second digit...
Might the arguments to y^{x} have been backwards?

Pauli

KeithB

Senior Member

Posts: 382
Joined: Jan 2017

RE: Estimation quiz!

Which is larger en or ne?
isn't an estimation problem. 22 or 23 are the same for an estimate.

Albert Chan 8

Posts: 2,148
Senior Member
Joined: Jul 2018

RE: Estimation quiz!

EdS2 Wrote:

(30th July, 2020 12:54)
which is larger, the number of millimetres in a mile or the number of square yards in a square kilometre?

We can estimate relative size without multiplying

1 yard $=(36 \mathrm{in})(25.4 \mathrm{~mm} / \mathrm{in})=914.4 \mathrm{~mm} \rightarrow \mathbf{1}$ yard $\approx \mathbf{1 ~ m}$
1 mile $=1760$ yard $\approx 1.760 \mathrm{e} 6 \mathrm{~mm} \quad / /$ over-estimated 10%
$1 \mathrm{~km} \wedge 2=(1 \mathrm{e} 3 \mathrm{~m})^{\wedge} 2 \approx 1 \mathrm{e} 6$ yard^2 $2 / /$ under-estimated 20%

Since $1.76>1.30$, we have mile $/ \mathrm{mm}>\mathrm{km} \wedge 2 /$ yard $^{\wedge} 2$

Paul Dale Wrote:

Which is larger e^{π} or π^{e} ?
$e^{\wedge} x=1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots \geq 1+x$
$x \geq \ln (1+x)$
\rightarrow if $x \neq 0, x>\ln (1+x)$
$\ln \left(e^{\wedge} y\right)=y$
$\ln \left(y^{\wedge} e\right)=e^{*}(1+\ln (1+(y / e-1))) \leq e^{*}(1+(y / e-1))=y$
\rightarrow if $y \neq e, \ln \left(y^{\wedge} e\right)<y \Rightarrow e^{\wedge} y>y^{\wedge} e$
$\rightarrow \mathrm{e}^{\wedge} \mathrm{pi}>\mathrm{pi} \mathrm{\wedge} \mathrm{e}$

Posts: 777

RE: Estimation quiz!

Or, even simpler:

Since $e^{\wedge} x=1+x+x^{\wedge} 2 / 2+\ldots, e^{\wedge} x>1+x$ if $x>0$
Take $x=p i / e-1, x>0$ because pi>e
$\mathrm{e}^{\wedge}(\mathrm{pi} / \mathrm{e}-1)>1+\mathrm{pi} / \mathrm{e}-1$
$\mathrm{e}^{\wedge}(\mathrm{pi} / \mathrm{e}) / \mathrm{e}>\mathrm{pi} / \mathrm{e}$
$\mathrm{e}^{\wedge}(\mathrm{pi} / \mathrm{e})>\mathrm{pi}$
$\left(e^{\wedge}(p i / e)\right)^{\wedge}(e)>p^{\wedge}(e)$
$e^{\wedge} p i>p i \wedge e$

Cheers, Werner

RE: Estimation quiz!

Werner Wrote:

Or, even simpler:
Since $e^{\wedge} x=1+x+x^{\wedge} 2 / 2+\ldots, e^{\wedge} x>1+x$ if $x>0$
Take $x=p i / e-1, x>0$ because pi>e
$\mathrm{e}^{\wedge}($ pi/e-1) $>1+$ pi/e -1
$\mathrm{e}^{\wedge}(\mathrm{pi} / \mathrm{e}) / \mathrm{e}>\mathrm{pi} / \mathrm{e}$
$\mathrm{e}^{\wedge}(\mathrm{pi} / \mathrm{e})>\mathrm{pi}$
$\left(e^{\wedge}(p i / e)\right)^{\wedge}(e)>p^{\wedge}(e)$
$e^{\wedge} p i>p i \wedge e$
Cheers, Werner

Clever! ;)

Albert Chan

Posts: 2,148
Senior Member

RE: Estimation quiz!

Another way, let $f=\ln \left(e^{\wedge} x / x^{\wedge} e\right)=x-e^{*} \ln (x)$
$\mathrm{f}^{\prime}=1-\mathrm{e} / \mathrm{x}=0 \Rightarrow \mathrm{x}=\mathrm{e} \quad / /$ locate extremum
$f^{\prime \prime}=e / x^{\wedge} 2>0 \quad / / 2 n d$ derivative test, $f(e)$ is minimum
if $f x \neq e: f(x)>f(e)=0 \Rightarrow e^{\wedge} x>x^{\wedge} e$
$\rightarrow \mathrm{e}^{\wedge} \mathrm{pi}>\mathrm{pi} \mathrm{A}^{\wedge}$

rprosperi B

Posts: 5,748
Super Moderator
Joined: Dec 2013

RE: Estimation quiz!

Albert and Werner: It's at times like this that I like to remind people this is exactly why we have calculators - when presented with a problem like this, we can carefully select the weapon of choice, perhaps an HP model not recently used, or an unusual competitive product, and bang it out.

With all due respect to your ever-obvious extreme math skills, I simply say: "Calculators gentlemen! The tool of discerning geeks everywhere" θ

As for the expected question of how to reply if someone puts a gun to my head and demands I solve the problem without a calculator; my reply: "shoot"

59:59:39
 Werner 8

Posts: 777

Joined: Dec 2013

RE: Estimation quiz!

Two remarks: the proof I presented is not mine, I found it somewhere.
And: you win, Albert!
Cheers, Werner

Senior Member

RE: Estimation quiz!

Third way, using the fact that continuous compouding maximize capital growth.
For finite periods $n, r>0:(1+r / n)^{\wedge} n<e^{\wedge} r$

Let $\mathrm{r}=\mathrm{pi}-\mathrm{e}, \mathrm{n}=\mathrm{e}$:
$p i^{\wedge} e=(e+r)^{\wedge} e=e^{\wedge} e^{*}(1+r / n)^{\wedge} n<e^{\wedge} e^{*} e^{\wedge} r=e^{\wedge} p i$
$\rightarrow \mathrm{e}^{\wedge} \mathrm{pi}>\mathrm{pi}{ }^{\wedge} \mathrm{e}$

EMAIL PM FIND

30th July, 2020, 22:03

rprosperi 8

Posts: 5,748
Super Moderator
Joined: Dec 2013

RE: Estimation quiz!

Albert Chan Wrote:

(30th July, 2020 20:10)
Third way, using the fact that continuous compouding maximize capital growth.

Thanks Albert, that page is actually quite good. It's a clear and easy to follow derivation of the various interest formulae. [bookmarked]
FEMAIL PM R FIND QUOTE REPORT

31st July, 2020, 00:25

Post: \#14

Paul Dale B
Posts: 1,787
Senior Member
Joined: Dec 2013

RE: Estimation quiz!

KeithB Wrote:

(30th July, 2020 15:56)
isn't an estimation problem. 22 or 23 are the same for an estimate.

They differ in the second significant digit just like the original problem.
Why would it be an estimation problem?

Pauli

31st July, 2020, 02:01
Post: \#15
cruff 8
Posts: 238
Member
Joined: Dec 2013

RE: Estimation quiz!

Paul Dale Wrote:
(30th July, 2020 15:04)
They differ in their second digit...
Might the arguments to y^{x} have been backwards?

Indeed, pilot error. That's what I get for not looking at the calculator key legend closely.

EdS2 8
Senior Member

RE: Estimation quiz!

Very nice view of the e^{\wedge} pi question!
For the headline (metric and imperial) I got it first by reckoning that both numbers were the same order of magnitude, and then by reckoning that miles are a bit on the large side for metric units, as are square yards, and both of those push in the same direction.

The puzzle is from PCW magazine, in a puzzle feature called Leisure Lines. There's a corresponding book, but almost all the puzzles are not estimations. Here's the one I spotted which is:

Quote:

If you could fold a sheet of rice paper, a thousandth of an inch thick, successively doubling the thickness, 50 times over, how thick would the result be?
[Content warning for that book: many cultural references have not dated well. Math and Logic Puzzles for PC Enthusiasts, by J. J. Clessa]
\Rightarrow EMAIL PM P FIND \& QUOTE REPORT

31st July, 2020, 15:40
Post: \#17

Posts: 1,787
Joined: Dec 2013

RE: Estimation quiz!

$1000 \approx 2^{10}$, so $\approx 2^{40}$ inches thick -- thicker than the sun's diameter by a factor of 5 or 6.

Pauli

P PM O, FIND

Valentin Albillo 8

Posts: 970
Senior Member
Joined: Feb 2015
Warning Level: 0\%

RE: Estimation quiz!
Paul Dale Wrote:
(31st July, 2020 15:40)
$1000 \approx 2^{10}$, so $\approx 2^{40}$ inches thick -- thicker than the sun's diameter by a factor of 5 or 6.

Well, no.
$2^{\wedge} 40$ inches are some 27.9275 million kilometers, and the sun's diameter is about 1.3927 million kilometers, so the factor is $\mathbf{\sim} \mathbf{2 0}$.

Your estimation was wrong by some 300-400\%.
V.
P PM WWW Q FIND \quad EDIT X QUOTE R REPORT

1st August, 2020, 03:09
Post: \#19

Posts: 1,787
Joined: Dec 2013

RE: Estimation quiz!

Thanks for the correction.
Regardless, it is a huge number.

Pauli

EdS2

Senior Member

Posts: 525
Joined: Apr 2014

RE: Estimation quiz!

Very good. I thought Pauli's estimate interesting - evidently each of us have our favourite yardsticks. For me, the distance to the Moon is the biggest one $\left(^{*}\right.$) in miles, at a quarter of a million. I don't (didn't) even have a figure in mind for the size
of the Sun. I think in future I'll count it as nearly a million miles. (I'm from the UK but old enough to be mostly unmetricated.)

A bit of mental arithmetic, reckoning 30 inches to the yard and 1500 yards to the mile, and $30 * 30$ about 1000, got me to the answer of 20 million miles, which isn't too far off.
(I'd like to make a joke comparing a Pauli estimate to a Fermi estimate, but I can't do it.)
(*) Oh, no, I do have the figure 93 million miles for the distance to the Sun. Perhaps the earliest large number I came across. And two digits of precision!

Thomas Okken 8

Posts: 1,828
Senior Member

RE: Estimation quiz!

The distance between the sun and Earth is my favorite almost-round number, at 499 light-seconds. ())
P PM Www PaIND RUOTE REPORT

Post: \#22

Massimo Gnerucci 8
Posts: 2,589
Senior Member
Joined: Dec 2013

RE: Estimation quiz!

Thomas Okken Wrote:

(1st August, 2020 09:30)
The distance between the sun and Earth is my favorite almost-round number, at 499 light-seconds.

Or almost exactly 150Gm.

```
PM WWw O FIND

\section*{RE: Estimation quiz!}

A useful approximation for electronics: speed of light \(\approx 1\) foot per nanosecond.
EmAIL PM PIND R QUOTE R REPORT

1st August, 2020, 22:41 (This post was last modified: 1st August, 2020 22:41 by johanw.)
Post: \#24

\section*{johanw 8}

Posts: 222
Member
Joined: Nov 2019

\section*{RE: Estimation quiz!}

\section*{ijabbott Wrote:}
(1st August, 2020 19:24)
A useful approximation for electronics: speed of light \(\approx 1\) foot per nanosecond.
Are all these ancient units still used in papers? I still remember the scolding I got when I entered wavelengths in Ångström ( \(1 \AA=10^{-10} \mathrm{~m}\) ) in my masters thesis. I had to change it to nm before I could get a passsing grade, the faculty had a strict SI-only policy.

\section*{RE: Estimation quiz!}

The distance between the sun and Earth is my favorite almost-round number, at 499 light-seconds. (\%)

I've always taken that value at exactly 500 seconds (i.e.: 8 min 20 sec .) as the distance between the sun and the Earth varies by as much as 5 MKm between aphelion ( \(\sim 152.1 \mathrm{Mkm}\) ) and perihelion ( 147.1 Mkm ), and that's plus or minus \(\sim 8\) light-seconds, give or take a second.

So 500 it is for me. Easier to remember and way "rounder" (in base 10; for a round value in base 2, the value 512 \(\left(1,000,000,000_{2}\right)\) would do \(\theta\)

Regards.
V.

\section*{- PM www Q FIND}

2nd August, 2020, 09:56
Post: \#26

\section*{ \\ Senior Member}

Posts: 820
Joined: Dec 2013

RE: Estimation quiz!

\section*{ijabbott Wrote:}
(1st August, 2020 19:24)
A useful approximation for electronics: speed of light \(\approx 1\) foot per nanosecond.
As a continental european \(E E\), my reference is 30 cm for \(1 \mathrm{~ns} .\).

\section*{johanw Wrote:}
(1st August, 2020 22:41)
Are all these ancient units still used in papers? I still remember the scolding I got when I entered wavelengths in Ångström \(\left(1 \AA=10^{-10} \mathrm{~m}\right)\) in my masters thesis. I had to change it to nm before I could get a passsing grade, the faculty had a strict SI-only policy.

Non-SI units are very common in astronomy, think of the old parsec (distance where a length of 1 AU is seen under an angle of 1 arc-second, with 1AU being the average Earth-Sun distance :-)
The parsec seems now less used and often replaced by the light-year ( 1 pc is about 3 ly ), but is still used for instance for the Hubble constant (cosmological expansion) Ho \(\approx 70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}\).

Also masses of stars are generally expressed not in kg but in solar mass, and so on.
A funny coincidence: there are (about) as many km in one light-year than Ångström in one km.

\section*{J-F}

Posts: 1,328
Joined: Dec 2013

\section*{RE: Estimation quiz!}
from Science Unit Conversion Humor
This is a list of funny, made-up scientific unit conversions.
453.6 graham crackers \(=1\) pound cake

There are 453.6 grams in 1 pound.
Ratio of an igloo's circumference to its diameter \(=\) Eskimo Pi
Pi is the ratio of a circle's circumference to diameter, while there is a stereotype that Eskimos dwell in igloos.
2000 pounds of Chinese soup \(=\) Won ton
A wonton is a type of Chinese dumpling. There are 2000 pounds in 1 ton.
Time between slipping on a peel and smacking the pavement \(=1\) bananosecond
Instead of expressing the unit in terms of nanoseconds, it's bananoseconds because a banana caused the fall.
1 millionth of a mouthwash \(=1\) microscope
This refers to the popular mouthwash, Scope. The metric prefix "micro" means one millionth.
1 million bicycles \(=1\) megacycles
The metric prefix "mega" means 106 or one million.
Weight an evangelist carries with God \(=1\) billigram
This refers to the American evangelist Billy Graham.
Time it takes to sail 220 yards at 1 nautical mile per hour \(=\) Knotfurlong
365.25 days of drinking low-calorie beer \(=1\) Lite year
16.5 feet in the Twilight Zone \(=1\) Rod Serling

The rod is a unit of length equal to 16.5 feet. Rod Serling is the American tv producer, screenwriter, and narrator responsible for "The Twilight Zone."

One symptom of laryngitis is hoarseness.
Shortest distance between two jokes - a straight line
To deliver a joke as a straight line means it's a short joke delivered with a straight face (like it's not a joke at all).
1 million microphones = 1 megaphone
365.25 days \(=1\) unicycle
365.25 days is one year or one cycle of the Earth around the Sun. It's especially clever because unicycle has another meaning. It's a bike with one wheel.

Half a large intestine \(=1\) semicolon
the large intestine is also called the colon. Since it's only half a colon, it's a semicolon, much like half a circle is a semicircle.
2000 mockingbirds = two kilomockingbirds
"To Kill a Mockingbird" is a famous novel by author Harper Lee published in 1960. The kilo is the prefix for a thousand. So, 2000 is two kilo.
10 cards \(=1\) decacard
Deca is the prefix for 10 .
52 cards \(=1\) deckacard
There are 52 cards in a deck of playing cards.
\(1,000,000\) aches \(=1\) megahurtz
There are one million (106) hertz in 1 megahertz. This is a play on words, substituting hurtz (like pain, but with a "z") for hertz.
1 millionth of a fish \(=1\) microfiche
The word "microfiche" is pronounced like micro-fish. The prefix micro means one millionth.
2.4 statute miles of intravenous surgical tubing at Yale University Hospital \(=1\) I.V.League

Intravenous tubing is also called IV tubing. Yale is one of the Ivy League school, plus 2.4 statute miles is a length equal to 1 league.
1 kilogram of falling figs \(=1\) fig newton
The newton is a unit force, which is mass under acceleration (such as you'd get from falling figs). This play on words refers to the Nabisco cookie, the fig newton.
1000 grams of wet socks \(=1\) literhosen
Lederhosen are short breeches (not actually socks). There are 1000 grams of water (more or less) in one liter. The liter is a unit of volume used for liquids, so wet socks are literhosen.
1 trillion pins \(=1\) terrapin
The prefix terra means a trillion.
10 rations \(=1\) decaration
The prefix deca means 10 .
100 rations \(=1 \mathrm{C}\)-ration
C is the Roman numeral for 100 .
2 monograms = 1 diagram
Mono is the prefix for one, while dia means two.
2 new dimes \(=\) new paradigms
Two dimes is a pair of dimes. A paradigm is a model or pattern.
These and many more available for your perusal somewhere out there on the net.
An implied rhetorical question, does SCIENCE own unit conversions?
BEST!
SlideRule


\section*{RE: Estimation quiz!}

The micro-fortnight is a surprisingly useful unit.
Pauli

\section*{EdS2 8}

Posts: 525
Senior Member
Joined: Apr 2014

\section*{RE: Estimation quiz!}

Here's one that might tax the most mathematical, and also needs some not very general knowledge: how many Jupiters could fit into the (volume of the) Sun?
(The readily searchable answer for this assumes we just compare volumes, which is as wrong as anyone with a jar of marbles can tell you.)

Or, something which is actually within the bounds of present mathematical knowledge, and closer to everyday experience: how many Moons could fit into the Earth?

\section*{Valentin Albillo 8}

Posts: 970
Senior Member
Joined: Feb 2015
Warning Level: 0\%

\section*{RE: Estimation quiz!}

EdS2 Wrote:
(2nd August, 2020 17:13)
how many Moons could fit into the Earth?

I'd estimate about 23, give or take a Moon.

\section*{V.}


2nd August, 2020, 19:04 (This post was last modified: 2nd August, 2020 19:04 by Maximilian Hohmann.)

\section*{Maximilian Hohmann 8}

Posts: 1,124
Senior Member
RE: Estimation quiz!
Hello!

\section*{Valentin Albillo Wrote:}
(2nd August, 2020 18:02)
I'd estimate about 23, give or take a Moon.

23 is always a good answer :-) But this one really got me interested and surprisingly (using finite time for my google search) I only found one paper online with an equation for this problem: Nelson M-Blachman: The Closest Packing of Equal Spheres in a Larger Sphere (1963). It can be freely accessed from here (registration required):
https://www.jstor.org/stable/2312064?rea...b_contents
If I entered the numbers correctly, there is place for just 11.8 moond (or 11 full moons) insdide our earth.
Regards
Max
EMAIL PM P FIND

2nd August, 2020, 19:41

\section*{Albert Chan}

Posts: 2,148
Senior Member
Joined: Jul 2018

\section*{RE: Estimation quiz!}

\section*{EdS2 Wrote:}
(2nd August, 2020 17:13)
(The readily searchable answer for this assumes we just compare volumes, which is as wrong as anyone with a jar of marbles can tell you.)

Planet sized spheres might not act like marbles.
Gravity may squash them into a giant sphere, possibly even denser.
Volume ratios might actually be a good estimate. From Wolfram Alpha:
\((\) earth volume) \(/(\) moon volume \()=49.31\)
(sun volume) \(/(\) jupiter volume) \(=986.7\)

Posts: 970
Joined: Feb 2015
Warning Level: 0\%

RE: Estimation quiz!
Maximilian Hohmann Wrote:
Hello!

I'd estimate about 23, give or take a Moon.

23 is always a good answer:-)

You bet.

\section*{Quote:}

If I entered the numbers correctly, there is place for just \(\mathbf{1 1 . 8}\) moond (or 11 full moons) insdide our earth.

It seem's you didn't or you used the wrong formula, as it's trivial to see your estimation is wrong.

Consider N spheres of unit diameter touching a central one (unit diameter too). Now it's well known that the maximum number N of non-overlapping spheres touching a central one is \(\mathbf{1 2}\) (a 13th almost fits but ultimately doesn't). This makes 13 equal spheres in all of unit diamter, 12 of them in contact with the central one.

But as it's trivial to see, they all fit in a sphere of diameter exactly 3: O O O
And as the ratio of Moon's to Earth's diameter is about 0.27 this means that if the Moon's sphere has diameter \(\mathbf{1}\) then Earth is a sphere of diameter \(\sim \mathbf{3 . 7}\), and thus if 13 spheres could be easily contained within a sphere of diameter just 3, then a sphere of diameter 3.7 will hold way more, certainly more than your "11.8", let's say \(23 \ldots\)

Regards.
V.

2nd August, 2020, 23:01

\section*{Maximilian Hohmann 8}

Senior Member

\section*{RE: Estimation quiz!}

Hello!

\section*{Valentin Albillo Wrote:}
(2nd August, 2020 19:54)
And as the ratio of Moon's to Earth's diameter is about 0.27 this means that if the Moon's sphere has diameter \(\mathbf{1}\) then Earth is a sphere of diameter \(\mathbf{\sim} \mathbf{3 . 7}\), and thus if 13 spheres could be easily contained within a sphere of diameter just 3 , then a sphere of diameter 3.7 will hold way more, certainly more than your "11.8", let's say 23 ...

I am not so sure about that. After your 13 moons (the central one and the next layer of 12 adjacient to it) there is not enough space for another full layer of moons within the Earth's radius. The central moon has a radius of 0,27 to this you have to add the diameter of the next layer of 0,54 , so the envelope of that lfirst ayer reaches out to 0,81 ). If at all, the extra moons need to fit into the gaps between the 12 moons of the first layer and the radius of the Earth. My guess is that there is no symmetrical solution for a maximum number of moons (as it seems to be the case with the old equation I found) but the 10 extra moons have to be added to one side only. But how can that be calculated?

\section*{Regards}

Max

Posts: 1,328

RE: Estimation quiz!

\section*{Maximilian Hohmann Wrote:}
(2nd August, 2020 19:04)
... I only found one paper online with an equation for this problem: Nelson M. Blachman: The Closest Packing of Equal Spheres in a Larger Sphere (1963) ...

An interesting read:
Grundlehren def mathematischen Wissenschaften 290
Sphere Packings, Lattices and Groups
ISBN 978-1-4757-2016-7 (eBook)
© 1988 by Springer Science+Business Media New York```

