Welcome back, Valentin Albillo. You last visited: Today, 02:03 (User CP - Log Out)	Current time: 27th July, 2023, 03:13
View New Posts View Today's Posts Private Messages (Unread 0, Total 184)	Open Buddy Lis
P Forums / Not HP Calculators / Not remotely HP Calculators 🔻 / Estimati	on quiz!
ages (2): 1 2 Next »	K NEW REPLY
Estimation quiz!	Threaded Mode Linear Mod
30th July, 2020, 12:54	Post: #
EdS2 🗟 Senior Member	Posts: 525 Joined: Apr 2014
Estimation quiz!	
This is from an old computer magazine: which is larger, the number of millimetres yards in a square kilometre?	in a mile or the number of square
Any other quick numeric or numeracy quizzes to share?	
(Of course I liked this one because I got it right)	
Semail PM Stind	💰 QUOTE 💋 REPORT
0th July, 2020, 13:27 (This post was last modified: 30th July, 2020 13:30 by Paul Dale.)	Post: #
Paul Dale	Posts: 1,787
Senior Member	Joined: Dec 2013
RE: Estimation quiz! Interesting problem. Being confident in both systems of units makes it easier.	
Which is larger e^{π} or π^e ?	
Dauli	
Pauli	
PM S FIND	S QUOTE S REPOR
0th July, 2020, 15:00	Post: #
cruff 💩	Posts: 238 Joined: Dec 2013
1ember RE: Estimation quiz!	Joined. Dec 2015
Paul Dale Wrote:	(20th July 2020 12:27)
Which is larger e^{π} or π^{e} ?	(30th July, 2020 13:27)
Neither? It appears, to 9 significant digits, these are the same number. Too early i moment.	n the morning to work out why at the
🖗 EMAIL 🖉 PM 🥄 FIND	💰 QUOTE 💅 REPOR
0th July, 2020, 15:04	Post: #
Paul Dale	Posts: 1,787
Senior Member	Joined: Dec 2013
RE: Estimation quiz!	
They differ in their second digit	

Pauli

Massimo Gnerucci 🌡 Senior Member

RE: Estimation quiz!		
Werner Wrote:	(30th July, 2020 16:24)	
Or, even simpler: Since $e^x = 1 + x + x^2/2 +, e^x > 1 + x$ if $x > 0$ Take $x = pi/e - 1, x > 0$ because $pi > e$ $e^{(pi/e-1) > 1 + pi/e - 1}$ $e^{(pi/e) / e > pi/e}$ $e^{(pi/e) > pi}$ $(e^{(pi/e))^{(e)} > pi^{(e)}$ $e^{pi} > pi^{e}$		
Cheers, Werner		
Clever! ;)		
PM 🗣 WWW 🥄 FIND	< QUOTE 💅 REPORT	
30th July, 2020, 17:10	Post: #9	
Albert Chan Senior Member	Posts: 2,148 Joined: Jul 2018	
RE: Estimation quiz! Another way, let $f = ln(e^x/x^e) = x - e^{ln(x)}$		
$f' = 1 - e/x = 0 \Rightarrow x = e$ // locate extremum $f'' = e/x^2 > 0$ // 2nd derivative test, f(e) is minimum		
if f x \neq e: f(x) > f(e) = 0 \Rightarrow e^x > x^e		
$\rightarrow e^{pi} > pi^e$		
Semail Semail Find	🤞 QUOTE 💋 REPORT	
30th July, 2020, 18:20	Post: #10	
rprosperi 占 Super Moderator	Posts: 5,748 Joined: Dec 2013	
RE: Estimation quiz! Albert and Werner: It's at times like this that I like to remind people this is exactly why we have calculators - when presented with a problem like this, we can carefully select the weapon of choice, perhaps an HP model not recently used, or an unusual competitive product, and bang it out.		
With all due respect to your ever-obvious extreme math skills, I simply say: "Calculators gentlemen! The tool of discerning geeks everywhere" 😀		
As for the expected question of how to reply if someone puts a gun to my head and demands I solve the problem without a calculator; my reply: "shoot"		
S EMAIL PM FIND	🤞 QUOTE 💅 REPORT	
30th July, 2020, 19:37	Post: #11	
Senior Member	Posts: 777 Joined: Dec 2013	
RE: Estimation quiz! Two remarks: the proof I presented is not mine, I found it somewhere. And: you win, Albert! Cheers, Werner		
S EMAIL PM SIND	🤞 QUOTE 📝 REPORT	

30th July, 2020, 20:10

Albert Chan a	Posts: 2,148 Joined: Jul 2018
RE: Estimation guiz!	
Third way, using the fact that continuous compouding maximize capital growth. For finite periods n, r>0: $(1 + r/n)^n < e^r$	
Let r = pi - e, n = e:	
$pi^e = (e + r)^e = e^e * (1 + r/n)^n < e^e * e^r = e^pi$	
$\rightarrow e^{pi} > pi^e$	
S EMAIL FIND	🤞 QUOTE 💋 REPORT
30th July, 2020, 22:03	Post: #13
rprosperi 🖕 Super Moderator	Posts: 5,748 Joined: Dec 2013
RE: Estimation quiz!	
Albert Chan Wrote:	(30th July, 2020 20:10)
Third way, using the fact that continuous compouding maximize capital growth.	
Thanks Albert, that page is actually quite good. It's a clear and easy to follow derivation of [bookmarked]	the various interest formulae.
S EMAIL FIND	🤞 QUOTE 🔗 REPORT
31st July, 2020, 00:25	Post: #14
Paul Dale Senior Member	Posts: 1,787 Joined: Dec 2013
RE: Estimation quiz!	
KeithB Wrote: isn't an estimation problem. 22 or 23 are the same for an estimate.	(30th July, 2020 15:56)
They differ in the second significant digit just like the original problem. Why would it be an estimation problem?	
Pauli	
PM TIND	🤞 QUOTE 🔗 REPORT
31st July, 2020, 02:01	Post: #15
cruff 🖁 Member	Posts: 238 Joined: Dec 2013
RE: Estimation quiz!	
Paul Dale Wrote:	(30th July, 2020 15:04)
They differ in their second digit Might the arguments to y ^x have been backwards?	
Indeed, pilot error. That's what I get for not looking at the calculator key legend closely.	
S EMAIL PM FIND	< QUOTE 💅 REPORT
31st July, 2020, 15:26 (This post was last modified: 31st July, 2020 15:28 by EdS2.)	Post: #16
EdS2	Posts: 525 Joined: Apr 2014
RE: Estimation quiz!	
Very nice view of the e^pi question!	
For the headline (metric and imperial) I got it first by reckoning that both numbers were th and then by reckoning that miles are a bit on the large side for metric units, as are square in the same direction.	

The puzzle is from PCW magazine, in a puzzle feature called Leisure Lines. There's a corresponding book, but almost all the puzzles are not estimations. Here's the one I spotted which is:

Quote:

If you could fold a sheet of rice paper, a thousandth of an inch thick, successively doubling the thickness, 50 times over, how thick would the result be?

[Content warning for that book: many cultural references have not dated well. *Math and Logic Puzzles for PC Enthusiasts*, by J. J. Clessa]

Very good. I thought Pauli's estimate interesting - evidently each of us have our favourite yardsticks. For me, the distance to the Moon is the biggest one(*) in miles, at a quarter of a million. I don't (didn't) even have a figure in mind for the size

of the Sun. I think in future I'll count it as nearly a million miles. (I'm from the UK but old enough to be mostly unmetricated.)

A bit of mental arithmetic, reckoning 30 inches to the yard and 1500 yards to the mile, and 30*30 about 1000, got me to the answer of 20 million miles, which isn't too far off.

(I'd like to make a joke comparing a Pauli estimate to a Fermi estimate, but I can't do it.)

(*) Oh, no, I do have the figure 93 million miles for the distance to the Sun. Perhaps the earliest large number I came across. And two digits of precision!

The distance between the sun and Earth is my favorite almost-round number, at **499** light-seconds.

I've always taken that value at exactly **500** seconds (i.e.: 8 min 20 sec.) as the distance between the sun and the Earth varies by as much as 5 MKm between aphelion (\sim 152.1 Mkm) and perihelion (147.1 Mkm), and that's plus or minus \sim 8 light-seconds, give or take a second.

So **500** it is for me. Easier to remember and way "rounder" (in base 10; for a round value in base 2, the value 512 (1,000,000,000₂) would do

Regards.

V. 🛸 PM 🔷 WWW 🥄 FIND 🗙 🍫 QUOTE 😽 EDIT 2nd August, 2020, 09:56 Post: #26 J-F Garnier 📥 Posts: 820 Joined: Dec 2013 Senior Member **RE: Estimation guiz!** ijabbott Wrote: (1st August, 2020 19:24) A useful approximation for electronics: speed of light \approx 1 foot per nanosecond. As a continental european EE, my reference is 30cm for 1ns ... johanw Wrote: (1st August, 2020 22:41) Are all these ancient units still used in papers? I still remember the scolding I got when I entered wavelengths in

Are all these ancient units still used in papers? I still remember the scolding I got when I entered wavelengths in Ångström ($1\text{\AA} = 10^{-10}\text{m}$) in my masters thesis. I had to change it to nm before I could get a passing grade, the faculty had a strict SI-only policy.

Non-SI units are very common in astronomy, think of the old parsec (distance where a length of 1AU is seen under an angle of 1 arc-second, with 1AU being the average Earth-Sun distance :-) The parsec seems now less used and often replaced by the light-year (1 pc is about 3 ly), but is still used for instance for the Hubble constant (cosmological expansion) Ho \approx 70 km/s/Mpc.

Also masses of stars are generally expressed not in kg but in solar mass, and so on.

A funny coincidence: there are (about) as many km in one light-year than Ångström in one km.

J-F

Semail PM S WWW FIND	💰 QUOTE 🖋 REPORT	
2nd August, 2020, 14:23	Post: #27	
Senior Member	Posts: 1,328 Joined: Dec 2013	
RE: Estimation quiz!		
from Science Unit Conversion Humor		
This is a list of funny, made-up scientific unit conversions.		
453.6 graham crackers = 1 pound cake		
There are 453.6 grams in 1 pound.		
Ratio of an igloo's circumference to its diameter = Eskimo Pi		
Pi is the ratio of a circle's circumference to diameter, while there is a stereotype that Eskimos dwell in igloos.		
2000 pounds of Chinese soup = Won ton		
A wonton is a type of Chinese dumpling. There are 2000 pounds in 1 ton. Time between slipping on a peel and smacking the pavement = 1 bananosecond		
Instead of expressing the unit in terms of nanoseconds, it's bananoseconds because a banana caused the fall.		
1 millionth of a mouthwash = 1 microscope		
This refers to the popular mouthwash, Scope. The metric prefix "micro" means one millionth.		
1 million bicycles = 1 megacycles		
The metric prefix "mega" means 106 or one million.		
Weight an evangelist carries with God = 1 billigram		
This refers to the American evangelist Billy Graham. Time it takes to sail 220 yards at 1 nautical mile per hour = Knotfurlong		
365.25 days of drinking low-calorie beer = 1 Lite year		
16.5 feet in the Twilight Zone = 1 Rod Serling		
The rod is a unit of length equal to 16.5 feet. Rod Serling is the American tv producer, screenwriter, and narrator res	sponsible for "The Twilight Zone."	
I	I	

Valentin Albillo Wrote:

I'd estimate about 23, give or take a Moon.

(2nd August, 2020 18:02)

23 is always a good answer :-)

You bet.

Ouote:

If I entered the numbers correctly, there is place for just 11.8 moond (or 11 full moons) insdide our earth.

It seem's you didn't or you used the wrong formula, as it's trivial to see your estimation is wrong.

Consider N spheres of unit diameter touching a central one (unit diameter too). Now it's well known that the maximum number N of non-overlapping spheres touching a central one is 12 (a 13th almost fits but ultimately doesn't). This makes **13** equal spheres in all of unit diamter, 12 of them in contact with the central one.

But as it's trivial to see, they all fit in a sphere of diameter exactly 3: 0 0 0

And as the ratio of Moon's to Earth's diameter is about 0.27 this means that if the Moon's sphere has diameter 1 then Earth is a sphere of diameter ~3.7, and thus if 13 spheres could be easily contained within a sphere of diameter just 3, then a sphere of diameter 3.7 will hold way more, certainly more than your "11.8", let's say 23 ...

Regards.

RE: Estimation quiz!

Senior Member

Maximilian Hohmann Wrote:

(2nd August, 2020 19:04)

... I only found one paper online with an equation for this problem: Nelson M. Blachman: The Closest Packing of Equal Spheres in a Larger Sphere (1963) ...

An interesting read: Grundlehren def mathematischen Wissenschaften 290 Sphere Packings, Lattices and Groups ISBN 978-1-4757-2016-7 (eBook) © 1988 by Springer Science+Business Media New York